Fractional Patlak--Keller--Segel Equations for Chemotactic Superdiffusion
نویسندگان
چکیده
منابع مشابه
The fractional Keller-Segel model
The Keller-Segel model is a system of partial differential equations modelling chemotactic aggregation in cellular systems. This model has blowing up solutions for large enough initial conditions in dimensions d ≥ 2, but all the solutions are regular in one dimension; a mathematical fact that crucially affects the patterns that can form in the biological system. One of the strongest assumptions...
متن کاملLocal and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion
Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d ≥ 2 and in all of space for d ≥ 3, the uniqueness being a result ...
متن کاملA finite volume scheme for the Patlak-Keller-Segel chemotaxis model
A finite volume method is presented to discretize the Patlak-Keller-Segel (PKS) model for chemosensitive movements. On the one hand, we prove existence and uniqueness of a numerical solution to the proposed scheme. On the other hand, we give a priori estimates and establish a threshold on the initial mass, for which we show that the numerical approximation convergences to the solution to the PK...
متن کاملCritical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions
This paper is devoted to the analysis of non-negative solutions for a generalisation of the classical parabolic-elliptic PatlakKeller-Segel system with d ≥ 3 and porous medium-like non-linear diffusion. Here, the non-linear diffusion is chosen in such a way that its scaling and the one of the Poisson term coincide. We exhibit that the qualitative behaviour of solutions is decided by the initial...
متن کاملGlobal Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous Diffusion
The L-critical parabolic-elliptic Patlak-Keller-Segel system is a classical model of chemotactic aggregation in micro-organisms well-known to have critical mass phenomena [10, 8]. In this paper we study this critical mass phenomenon in the context of Patlak-Keller-Segel models with spatially varying diffusivity and decay rate of the chemo-attractant. The primary tool for the proof of global exi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Applied Mathematics
سال: 2018
ISSN: 0036-1399,1095-712X
DOI: 10.1137/17m1142867